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Abstract 22 
 23 
The detection of meteorological, chemical, or other signals in modeled or observed air quality 24 

data – such as an estimate of a temporal trend in surface ozone data, or an estimate of the mean 25 

ozone of a particular region during a particular season – is a critical component of modern 26 

atmospheric chemistry. However, the magnitude of a surface air quality signal is generally small 27 

compared to the magnitude of the underlying chemical and meteorological variabilities that exist 28 

both in space and in time. This can present difficulties for both policy-makers and researchers as 29 

they attempt to identify the influence or 'signal' of climate trends (e.g. any pauses in warming 30 

trends), the impact of enacted emission reductions policies (e.g. United States NOx State 31 

Implementation Plans), or an estimate of the mean state of highly variable data (e.g. summertime 32 

ozone over the Northeastern United States).  Here we examine the scale-dependence of the 33 

variability of simulated and observed surface ozone data within the United States and the 34 

likelihood that a particular choice of temporal or spatial averaging scales produce a misleading 35 

estimate of a particular ozone signal. Our main objective is to develop strategies that reduce the 36 

likelihood of overconfidence in simulated ozone estimates. We find that while increasing the 37 

extent of both temporal and spatial averaging can enhance signal detection capabilities by 38 

reducing the 'noise' from variability, a strategic combination of particular temporal and spatial 39 

averaging scales can maximize signal detection capabilities over much of the Continental US. 40 

We recommend temporal averaging of at least 10 - 15 years combined with regional spatial 41 

averaging over several hundred kilometer spatial scales. These results are consistent between 42 

simulated and observed data, and within a single model with different sets of parameters. The 43 

strategies selected in this study are not limited to surface ozone data, and could potentially 44 

maximize signal detection capabilities within a broad array of climate and chemical observations 45 

or model output. 46 
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1 Introduction 60 

The capability to detect air quality signals – be they meteorological, chemical, or of some 61 

other type – is a fundamental component of modern climate science and atmospheric chemistry. 62 

The debate over the existence or length of a global warming hiatus (Lewandowski et al., 2015; 63 

Roberts et al., 2015; Medhaug et al., 2017) and research examining the time of emergence of 64 

climatological (Hawkins and Sutton, 2012; Elía et al., 2013; Schurer et al., 2013), meteorological 65 

(Giorgi and Bi, 2009; King et al., 2015), chemical (Barnes et al., 2016; Garcia-Menendez et al., 66 

2017), and other sectoral signals (e.g. Monier et al., 2016) embody an accumulation of 67 

techniques and strategies for filtering noise (due to natural variability) and maximizing the 68 

capability to detect statistically significant signals and trends in noisy data. It is well established 69 

that temporal averaging (e.g. Lewandowski et al., 2015) and spatial averaging (e.g. Frost et al., 70 

2006; Hawkins and Sutton, 2012; Barnes et al., 2016) can enhance signal detection capabilities 71 

in atmospheric data. Here we extend this research by quantifying the impact of both spatial and 72 

temporal averaging – individually and in combination – of surface ozone on the magnitude of the 73 

calculated variability, which is largely driven by the influence of meteorological variability on 74 

the atmospheric chemistry (e.g. Jacob and Winner, 2009). We offer recommendations for 75 

strategically averaging in space and time to maximize signal detection capabilities. In particular, 76 

we examine estimates of mean ozone and of the ozone variability that results from meteorology, 77 

although our approach can be generalized to other air quality applications. 78 

For observed ozone data, strategies for reducing spatial and temporal noise are limited: a 79 

longer time series is needed, more observations need to be made, or the spatial region over which 80 

the ozone observations are being averaged over needs to be enlarged. For surface ozone 81 

estimates using models, however, there exist a variety of strategies for reducing the noise (due to 82 

chemical and meteorological variability) relative to the strength of the signal, although they 83 

cluster into three main types. The first strategy is to average or combine multiple runs of 84 

structurally different models under the assumption that errors, biases, and uncertainties within 85 

the individual models are reduced and the multi-model or multi-dataset mean is a best estimate 86 

of the actual, aggregated ozone field. This is most notably done with multi-model ensembles 87 

within the ACCMIP framework (Lamarque et al., 2013; Young et al., 2013; Stevenson et al., 88 

2013), and this approach tends to assume that all members in the ensemble are independent and 89 

equally skillful. This assumption, however, may result in a loss of some valuable information 90 
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(Knutti, 2010). Another form of this strategy is to run multiple model runs within a single model, 91 

but under different initial conditions or sets of parametric assumptions (e.g. Deser et al, 2010; 92 

Monier et al., 2013, 2015; Kay et al., 2015; Garcia-Menendez et al., 2015, 2017). This approach 93 

cannot address structural uncertainties between models, but is capable of identifying parametric 94 

uncertainties within a single model.  95 

The second strategy to reduce ozone variability is to expand the temporal averaging window, 96 

which can influence the interpretation of the determined ozone value (e.g. Brown-Steiner et al., 97 

2015). The Environmental Protection Agency (EPA) National Ambient Air Quality Standard 98 

(NAAQS) for ozone (US EPA, 2015) explicitly takes this into account, both in the length of the 99 

averaging period (daily maximum 8-hour average) and the selection criteria for the standard 100 

(fourth-highest over the previous 3 years). The calculated ozone variability can be further 101 

reduced by utilizing even longer averaging periods, such as monthly (e.g. Rasmussen et al., 102 

2012), seasonal (e.g. Fiore et al., 2014; Barnes et al., 2016), annual, or decadal mean values (e.g. 103 

Garcia-Menendez et al., 2017). This strategy is analogous to the averaging of meteorological 104 

data to derive a climate signal, and just as Lewandowsky et al. (2015) recommend averaging 17 105 

or more years in order to achieve climatological estimates of temperature trends, there is a 106 

growing body of literature recommending averaging short time scale chemical variability (what 107 

could be called chemical weather, see Lawrence, 2005) for 15 or more years (e.g. Garcia-108 

Menendez et al, 2017) in order to achieve an estimate of the what could be called the chemical 109 

climate (see Möller, 2010). 110 

The third strategy to reduce ozone variability is to average surface ozone values over larger 111 

spatial regions, and while there is a significant body of literature discussing the capability and 112 

interpretation of coarse resolution model representations of the sub-grid scale heterogeneity 113 

(Pyle and Zavody, 1990; Searle et al., 1998, Wild et al., 2006), there are few that strategically 114 

expand the spatial scale over which averaging is applied in order to maximize signal detection 115 

capabilities. This strategy has been applied in other fields of the atmospheric sciences as well as 116 

for general gridded datasets (e.g. Pogson and Smith, 2015), and spatial averaging has been 117 

suggested as a means of reducing temperature variability and smoothing biases at the smallest 118 

spatial scales within a single model run (Räisänen and Ylhäsi, 2011). This “scale problem” has 119 

also been noted as an important consideration when analyzing aerosol indirect effects 120 
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(McComiskey and Feingold, 2012) and for the detection and attribution of extreme weather 121 

events (Angélil et al., 2017). 122 

Our objective in this study is to provide a framework for selecting spatial and temporal 123 

averaging scales that limits the likelihood of over-confidence in an estimate of surface ozone that 124 

arises from meteorological variability. This type of framework can be useful from two different 125 

research perspectives. The first research perspective has a priori an ozone estimate (either 126 

observed or modeled) at a certain spatial and temporal scale (e.g. a 3-year simulation of surface 127 

ozone over the Northeastern US) and wants to quantify the likelihood that this estimate is 128 

representative of the long-term ozone behavior (rather than overly sensitive to meteorological 129 

variability of that particular 3-year period). Since ozone is strongly influenced by natural 130 

fluctuations in meteorology (Jacob and Winner, 2009; Jhun et al., 2015) and since extremes in 131 

surface ozone and temperature tend to co-occur (Schnell and Prather, 2017), atypically hot or 132 

cold periods can strongly influence ozone behavior over short time scales. 133 

The second research perspective is to identify an ozone signal of a certain magnitude (or 134 

threshold) and needs to decide what spatial and temporal averaging scales are needed to best 135 

identify that signal. The ozone signal could be large (e.g. determining the effectiveness or 136 

compliance with a 5 ppbv incremental reduction of the EPA NAAQS for ozone (US EPA, 2015)) 137 

or small (e.g. identifying annual ozone trends within the US, which Cooper et al. (2012) show 138 

can be on the order of 0.10 – 0.45 ppbv), and can be highly sensitivity to spatial and temporal 139 

heterogeneity and meteorological variability. Barnes et al. (2016) found that surface ozone trends 140 

over 20-year periods can vary by ± 2 ppbv due solely to climate variability, while interannual 141 

variability can be on the order of ± 15 ppbv (Fiore et al., 2003; Tilmes et al., 2012; Line et al., 142 

2014) and day-to-day variability can be even larger, extending regularly from near-background 143 

levels of 40 – 50 ppbv up to 100 ppbv during the summertime (Fiore et al., 2014).  144 

In this study, we quantify the impact of both temporal and spatial averaging on the calculated 145 

ozone variability – due solely to meteorological variability – in order to maximize the capability 146 

to detect trends. We use simulated ozone (with the Community Atmosphere Model with 147 

Chemistry, CAM-chem) and observational data (with the EPA’s Clean Air Status and Trends 148 

Network, CASTNET) within the United States in order to answer the following four questions: 149 

(1) Within a given dataset (model or observations), with both spatial and temporal coverage, 150 

what is the magnitude of the ozone variability due to meteorology at the smallest scale, and how 151 
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does spatial and temporal averaging reduce this variability? (2) Are there combinations of 152 

temporal and spatial averaging scales that maximize the signal detection capability for surface 153 

ozone data? (3) How sensitive are the above strategies to different configurations (i.e. emissions, 154 

meteorology, and climate) of the CAM-chem modeling framework? And (4) How could they be 155 

applied to other datasets (chemical, meteorological, or climatological)? We limit our focus to 156 

spatial scales within the United States as it has high spatial and temporal variability and 157 

numerous observations, and since averaging over larger regions (e.g. the Northern Hemisphere, 158 

or the globe) would produce a smaller calculated variability. 159 

In Section 2, we describe the CAM-chem model and our simulations, as well as the 160 

CASTNET observational database and the regional definitions used throughout this paper. In 161 

Section 3 we quantify the temporal and spatial variability of surface ozone, show how temporal 162 

and spatial averaging reduces the calculated ozone variability, and demonstrate the spatial 163 

heterogeneity of the calculated ozone variability. In Section 4, we discuss the potential strategies 164 

that could be used to maximize ozone trend detection due to meteorological variability, explore 165 

uncertainties, and make recommendations for future research.  166 

 167 

2 Methods 168 
 169 
 We examine both present-day (one simulation and one observed dataset) and future (two 170 

simulations) surface ozone in this study. For present-day analysis, we simulate surface ozone 171 

using CAM-chem, a component of the Community Earth System Model (CESM) and available 172 

observations within the US from the EPA CASTNET database. For future analysis, and in order 173 

to examine the potential for patterns of variability to change in the future, we utilize two existing 174 

simulations of CAM-chem conducted by Garcia-Menendez et al. (2017). Much of this analysis is 175 

conducted using the R language (R-Project, www.r-project.org). Here we summarize each of the 176 

three datasets and our approach to our analysis in Section 3. 177 

 178 

2.1 CAM-chem 179 

The present-day simulation (MOZ_2000) was conducted using CAM-chem model 180 

version 1.2.2, with the CAM4 atmospheric component (Tilmes et al., 2015; 2016). The model 181 

has been used extensively for a wide range of atmospheric chemistry research and included in 182 

the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP, Lamarque et 183 
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al., 2012; Young et al., 2012 and references therein). We conduct our simulations using the 184 

MOZART-4 chemical mechanism (Emmons et al., 2010) with offline forced meteorology from 185 

the Modern-Era Retrospective analysis for Research and Applications (MERRA) reanalysis 186 

product (Rienecker et al., 2011) for 26 meteorological years (1990 – 2015). This simulation has 187 

56 vertical levels – adopted from MERRA meteorology – and 96 latitudinal and 144 longitudinal 188 

grid cells. We aim to isolate the variability to the meteorologically-driven impact on atmospheric 189 

chemistry so we repeat year-2000 anthropogenic emissions from the ACCMIP (Atmospheric 190 

Chemistry and Climate Model Intercomparison Project) inventory (Lamarque et al., 2012) and 191 

all non-biogenic emissions for all meteorological years, and include specified long-lived 192 

stratospheric species (O3, NOx, HNO3, N2O, N2O5) as in MOZART-4 (Emmons et al., 2010), an 193 

online biogenic emissions model MEGAN (Guenther et al., 2012), and forced sea ice and sea 194 

surface temperatures to year 2000 historical conditions. Like many state-of-the-art chemical 195 

tracer models, the CAM-chem exhibits some biases, most notably for our purposes a high bias in 196 

simulated surface ozone in the Eastern US (e.g. Lamarque et al., 2012; Brown-Steiner et al., 197 

2015; Travis et al., 2016; Barnes et al., 2016). Recent efforts have been successful in partially 198 

reducing these biases (e.g. Sun et al., 2017).  199 

We also include two reference simulations of the future, MOZ_2050 and MOZ_2100 200 

(simulating the meteorological years 2035 – 2065 and 2085 – 2115, respectively) using the 201 

CESM CAM-chem simulations described in detail by Garcia-Menendez et al. (2017) with one 202 

set of initial condition data, and a climate sensitivity of 3.0 ˚C.  Compared to the present-day 203 

simulations, these future simulations have several parametric differences: the model version is 204 

1.1.2, the atmospheric component is CAM3, the emissions (which are held constant at year-2000 205 

levels) are from the Precursors of Ozone and their Effects in the Troposphere database (see 206 

Garcia-Menendez et al., 2017), and the meteorology is derived from a linkage between the 207 

Massachusetts Institute of Technology Integrated Global System Model (MIT IGSM) and the 208 

CESM CAM model (Monier et al., 2013), and as such has 26 vertical levels. For a full 209 

description of these simulations, see Garcia-Menendez et al. (2017). 210 

 211 

2.2 CASTNET 212 

The observational database comes from the EPA Clean Air Status and Trends Network 213 

(CASTNET), which has more than 90 surface observational sites within the United States and 214 
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has been collecting hourly surface meteorological and chemical data since 1990 (US EPA, 2016 215 

and https://www.epa.gov/castnet). We collected data from all sites that reported complete ozone 216 

data from each year and removed data that was marked invalid within the downloaded EPA files. 217 

The number of sites that matched these criteria varied from year to year, but generally we have 218 

between 55 and 94 sites throughout the 1991 – 2014 period. The CASTNET observational 219 

network is located primarily in rural sites, and thus is considered to be a reasonable comparison 220 

to coarse grid cell model output. Since a notable trend in observed ozone data exists, especially 221 

in the Northeastern US (Frost et al., 2006), and since the simulations have no change in 222 

anthropogenic emissions, and thus no ozone trend, we detrended the CASTNET data for each of 223 

the four averaging regions (described below) using a simple linear regression. 224 

  225 

2.3 Telescoping Regional Definitions 226 

In order to isolate the impact of the size of the spatial scale over which ozone data is 227 

averaged, we analyze ozone data at different spatial scales. The largest region considered is the 228 

entire Continental US, while the smallest regions considered are at the individual grid cell level 229 

of the CESM CAM-chem model (1.9˚x2.5˚ latitude/longitude). We focus on the US since there 230 

are CASTNET observations that provide adequate coverage in both space and time, and since the 231 

US has significant temporal and spatial variability. Data and statistics for the other regions (i.e. 232 

the Midwestern and Southeastern US) are included in the Supplemental Material, but do not alter 233 

the conclusions we draw from the Northeastern US. For CESM CAM-chem data, we averaged 234 

all grid cells within each region, while for the CASTNET data we first average sites within each 235 

corresponding CESM CAM-chem grid cell, and then averaged these data together. These 236 

telescoping regions are shown in Figure 1. 237 

 238 

3 Results 239 

Here we examine the spatial and temporal behavior of MOZ_2000, MOZ_2050, and 240 

MOZ_2100 and compare MOZ_2000 to present-day CASTNET observations. We introduce the 241 

moving temporal averaging windows, explore possible thresholds of acceptable error or signal 242 

strength, and examine the influence of expanding spatial averaging regions. Finally, we combine 243 

these temporal and spatial averaging techniques into a single framework.  244 

 245 
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3.1 Spatial and Temporal Comparisons 246 

Figure 2 plots the averaged spatial distribution of the daily maximum 8-hour ozone 247 

average (DM8H O3) for summertime (JJA) days for 1990-2015 for the present-day MOZART 248 

simulation, MOZ_2000 (Figure 2a) and for the year 2000 for CASTNET data (Figure 2b). The 249 

well-known high ozone bias in the Eastern US (e.g. Lamarque et al., 2012; Travis et al., 2016; 250 

Barnes et al., 2016) is apparent, but otherwise the spatial variability over the entire Continental 251 

US is well captured. While we do examine the magnitude of surface ozone in this paper, most of 252 

our analysis is focused on the variability around the mean value (the anomaly), and as we show 253 

below, the CASTNET observations and CESM results are largely consistent in their 254 

representation of ozone variability. The standard deviation of DM8H O3 is large over the Eastern 255 

US and the Pacific Coast, with peak values of ± 25 ppbv over the highly populated Atlantic 256 

Coast (Figure 2c). The variability (defined as the standard deviation divided by the mean, 257 

expressed as a percentage) is lowest over the Western US (~ 15%), only slightly higher over the 258 

Eastern US (up to 25%), and highest (up to 50%) over the coastal regions (Figure 2d). The future 259 

simulations, MOZ_2050 and MOZ_2100 (Figure 2e and 2f, respectively), although run with 260 

different parametric settings than MOZ_2000 (see Section 2), simulate a similar spatial 261 

distribution of surface ozone, although under the warmer simulated climate of 2050 and 2100. 262 

These future simulations have a similar spatial pattern to the present-day simulation (Figure 2a), 263 

with high ozone levels in the Eastern US that increases from 2050 to 2100 (see Garcia-Menendez 264 

et al. (2017) for more details). 265 

Figure 3 compares boxplots over the four telescoping regions (Figure 1) for MOZ_2000, 266 

the CASTNET data, the detrended CASTNET data, and for the single year 2000 for the 267 

CASTNET data (Figures 3a-d), and Table 1 summarizes relevant statistics. In order to compare 268 

CASTNET ozone to the simulated ozone, which do not have a trend over time, we detrend the 269 

CASTNET data in order to remove the impact of any temporal trends (e.g. NOx emissions 270 

reductions) on ozone. The Northeastern US ozone bias is apparent at the smaller spatial scales 271 

(Figures 3c,d) and is less apparent when averaging over larger regions (Figures 3a,b). Figure 3e 272 

compares the year-to-year boxplots of the JJA DM8H O3 for the MOZ_2000 and the detrended 273 

CASTNET data, and demonstrates the variability both in the median and spread of the ozone 274 

values in both the modeled and simulated data. While the MOZ_2000 ozone is generally higher 275 

than the CASTNET data, there are years in which the CASTNET data has higher ozone 276 
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extremes. The red box plot in Figure 3e, which corresponds to the red box plot in Figure 3b, 277 

indicates that the year 2000 was an anomalously low year for observed ozone, although not the 278 

lowest.  279 

While all the CESM CAM-chem simulations have high ozone biases in the Northeastern 280 

US (Figures 2 and 3, Table 1), their capability to simulate ozone variability is consistent with the 281 

available observations (for present day) and for expectations of ozone variability changes in the 282 

future (for MOZ_2050 and MOZ_2100). Here we examine the variability defined as the standard 283 

deviation divided by the mean (expressed as a percent), instead of the standard deviation alone, 284 

in order to account for the model biases in the magnitude of the simulated ozone. It is clear that 285 

variability increases when the size of the averaging region decreases, a fact that is well noted in 286 

the literature, as in Hawkins and Sutton (2012) for climate variables and Barnes et al. (2016) for 287 

ozone. As can be seen in in Table 1, the CASTNET variability increases as the spatial scale 288 

decreases (10%, 13%, 16%, and 20% for our telescoping regions), and MOZ_2000 largely 289 

captures this trend (5%, 10%, 15%, and 15%). This increase in ozone variability with decreasing 290 

spatial scale is maintained in the future simulations (6%, 10%, 16%, and 21% for MOZ_2050 291 

and 7%, 12%, 17%, and 20% for MOZ_2100). Table S1 contains statistics for the other 292 

telescoping regions. 293 
 294 

 295 
3.2 Variability, Averaging Windows, and Thresholds 296 

As we aim to quantify the potential tradeoffs that result from a particular choice of 297 

temporal and spatial scales on the assessment of ozone variability within the US, we represent 298 

the spatial scale by applying the telescoping regions (see Figure 1) and we represent the temporal 299 

scale through the use of moving averaging windows that range from 1 day up to the full 26 years 300 

for the CESM data (1990-2015), the full 24 years for the detrended CASTNET data (1991 – 301 

2014), and the 30 years available from the future scenarios of Garcia-Menendez et al. (2017). 302 

Each averaging window, therefore, can be considered to be a “sample” of possible realizations of 303 

meteorology. For instance, a selection of an averaging window of 1 year has 26 possible slices 304 

within the 1990 – 2015 MOZ_2000 data, while a selection of an averaging window of 10 years 305 

has 17 possible slices within the CESM data (N = # years – length of window +1). In this study, 306 

we consider all realizations to be equally likely and compare them to each other and to the long-307 

term trend. However, if we were only able to simulate 5 years, we would not be able to compare 308 
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to the long-term trend, and so be unable to completely quantify the likelihood of error in the 309 

context of the long-term behavior. We frame much of the following analysis from the 310 

perspective of limited simulation length in order to approximate the question that decision-311 

makers and modelers face when constrained by limited computational capabilities or available 312 

data: what’s the likelihood that a particular estimate (of both the mean and the variability) is not 313 

a true representation of the true mean and variability, but rather a product of the particular choice 314 

of spatial and temporal scale?  315 

Figure 4 presents this likelihood by plotting all possible estimates of DM8H O3 (as 316 

anomalies from the long-term mean) over all possible selections of averaging window (from 1 317 

day up to the complete time series) for our telescoping regions. The semi-cyclical and highly 318 

auto-correlated nature of surface ozone is apparent at all spatial scales, with alternating cycles of 319 

anomalously high and low ozone. The temporal impact of anomalous ozone events is indicated 320 

by the vertical and right-leaning diagonal striations, which show that anomalous ozone events 321 

can impact estimates of ozone values within averaging windows up to 15 or 20 years. Figure 4 322 

demonstrates how small-scale anomalously high or low ozone values (that come only from 323 

meteorological variability) can impact temporal averages of 5, 10, or even 20 years. For instance, 324 

a selected 5-year averaging window within the MOZ_2000 simulation averaged over the 325 

Northeastern US could be 2.5 ppbv higher or lower than the 25-year mean value of 74 ppbv, a 326 

difference of 7%. Horizontal lines in Figure 4 mark the length of averaging windows that are 327 

needed to ensure that ozone variability does not exceed a given threshold (5, 1, and 0.5 ppbv for 328 

solid, dashed, and dotted lines respectively). This difference is larger within smaller regions and 329 

at the shorter selections of the averaging window. While the high and low ozone anomalies differ 330 

in time between CASTNET, MOZ_2000, MOZ_2050, and MOZ_2100 in Figure 4, the impact of 331 

spatial and temporal averaging is consistent.   332 

We also quantify this variability in Supplemental Figures S1 and S2, which plots the 333 

likelihood (as a percentage) that a particular selection of spatial (rows) and temporal (x-axis) 334 

scale estimates ozone values that exceed a particular threshold (colored lines) away from the true 335 

mean value. For instance, if we are interested in characterizing ozone behavior (e.g. estimating a 336 

trend, or the mean value) in the Northeastern US, but were limited to a 5-year simulation, there is 337 

more than a 50% likelihood that the simulated ozone is 1 ppbv away from the 26-year mean, and 338 

an 80% likelihood that the discrepency is greater than 0.5 ppbv. However, these data indicate 339 
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that there is a virtual certainty that the estimate will be within 2.5 ppbv of the true mean value. 340 

We should note that, at the grid-cell level and within a 10-year period, the surface ozone 341 

variability can exceed 1 ppbv but is unlikely to exceed 2.5 ppbv (Figure 4), and that a 20-year 342 

trend is very likely to be able to identify significant ozone signals among the impact of 343 

meteorological variability on atmospheric chemistry. Our results also align with the results from 344 

Garcia-Menendez et al. (2017), which recommended that simulations need to be at least 15 years 345 

long to identify anthropogenically-forced ozone signals on the order of 1 ppbv. 346 

Figures 4 and Supplemental Figures S1 and S2 compare the CASTNET observations to 347 

the three CESM CAM-chem simulations, and while there are minor differences, there are broad 348 

features that are consistent. First, using longer temporal averaging windows reduces the 349 

influence of small-scale ozone variability at all spatial scales, and depending on the acceptable 350 

threshold, one can select a temporal scale that effectively reduces the likelihood of exceeding 351 

that threshold to zero. Second, larger spatial scales also reduce this likelihood of exceeding a 352 

given threshold, but not as effectively as longer temporal scales. Finally, the impact of both 353 

temporal and spatial averaging on ozone variability is largely consistent for the CASTNET 354 

observations and for all three CESM CAM-chem simulations. 355 

 356 

3.3 Selection of Temporal Averaging Scales 357 

 Figure 5 extends this analysis to examine the spatial heterogeneity of this likelihood of 358 

exceeding particular thresholds at the grid cell level. Here we plot four thresholds (0.5, 1, 2.5, 359 

and 5 ppbv) and four averaging windows (1, 5, 10, and 20 years) for the MOZ_2000 simulation. 360 

Ozone variability is highest in the Eastern US. At the grid-cell level, there are two strategies for 361 

filtering out the noise associated with natural meteorological variability (and thus enhancing 362 

signal detection capabilities): either average over longer periods, or increase the threshold. For 363 

these data, it is virtually certain that any 20-year average will be within 5 ppbv of a full 25-year 364 

mean value (which itself may not be an accurate representation of a longer simulation), and 365 

virtually certain that any 1-year average will be at least 0.5 ppbv away from the mean. 366 

Figure 6 and Supplemental Figure S3 compare the MOZ_2000, MOZ_2050, and 367 

MOZ_2100 simulations by selecting one column (the 5-year averaging window) and one row 368 

(the 1 ppbv ozone threshold) from Figure 6 for MOZ_2000 to equivalent plots for MOZ_2050 369 

and MOZ_2100. Interpreting Figures 7 and Supplemental Figure S3 give largely consistent 370 
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interpretations than the analysis above. Namely, that at the grid-scale level, increasing the 371 

temporal averaging window (Figure 6) or increasing the acceptable ozone threshold 372 

(Supplemental Figure S3) are effective at reducing the impact of the meteorological variability 373 

on estimates of the ozone signal. Short windows (or smaller thresholds) are needed in the 374 

Western US than in the Eastern US, and grid-cells over coastal and highly populated regions tend 375 

to need longer windows (or higher thresholds). Finally, the 1 ppbv threshold and the 5-year 376 

averaging window plots (in either Figure 5 or Supplemental Figure S3) indicate that the spatial 377 

distribution and location of the peak variability may shift into the future, although this may be 378 

due to parametric differences between MOZ_2000, MOZ_2050, and MOZ_2100. Future 379 

simulations will be needed to check this shift in peak ozone variability. 380 

 381 

3.4 Selection of Spatial Averaging Scales 382 

 We examine the impact of increasing the spatial averaging region (Figure 7) at four 383 

different temporal averaging windows (1, 5, 10, and 20 years) and for the smallest ozone 384 

threshold from the previous section (0.5 ppbv). It is evident that at all temporal averaging 385 

windows, expanding the number of surrounding grid cells that are averaged together consistently 386 

decreases the likelihood of exceeding the 0.5 ppbv threshold, although these reductions are 387 

relatively small at the 1-year window, especially over the Eastern U.S. While increasing the 388 

spatial averaging from a single grid-cell up to include the surrounding 81 grid cells (bottom row 389 

in Figure 7) manages to essentially smooth away much of the spatial heterogeneity in surface 390 

ozone (by moving down any column in Figure 7), it does not eliminate the likelihood of 391 

exceeding the 0.5 ppbv threshold over much of the Eastern U.S. For instance, even at a 20-year 392 

averaging window, and by averaging together the surrounding 81 grid-cells over locations in the 393 

Eastern U.S., there is still a 20-70% likelihood of exceeding the 0.5 ppbv threshold due to the 394 

small-scale impact of the meteorological variability on atmospheric chemistry. 395 

 396 

3.5 Combination of Spatial and Averaging Scales 397 

We now examine the combined impact of temporal and spatial averaging on reducing the 398 

influence of small-scale ozone variability in order to enhance ozone signal detection capabilities. 399 

Table S2 summarizes our analysis by dividing the likelihood of the ozone variability estimates 400 

exceeding selected thresholds away from the long-term mean into four categories: (1) the length 401 
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of the averaging window over which ozone is averaged (columns); (2) the magnitude of the 402 

ozone threshold of interest (rows); (3) the observed (CASTNET) and modeled (MOZ_2000, 403 

MOZ_2050, and MOZ_2100) ozone data (sub-columns); and (4) the size of the spatial extent 404 

over which ozone is averaged (sub-rows). A graphical representation consistent with the data 405 

presented in Table S2 is plotted in Figure 8 for the Continental US average and for three grid 406 

cells that represent various cases. In each plot in Figure 8, by moving along columns from left to 407 

right, we can see the influence of increasing the size of the temporal averaging window, and by 408 

moving along rows (from the bottom to the top), we can see the influence of increasing the 409 

spatial averaging scale. By taking in the entire plot as a whole, we can get a feel for the 410 

combined influence of both temporal and spatial averaging. Supplemental Figure S4 contains a 411 

plot for each grid cell in the Continental US. 412 

On average within the Continental US, both temporal and spatial averaging are effective 413 

at reducing the calculated DM8H O3 anomaly, although temporal averaging is more effective 414 

(Figure 8a). There are many grid cells in the Eastern and Western US coasts (Figure 8b, 415 

Supplemental Figure S4), where both spatial and temporal averaging are effective, but their 416 

combined usage is especially effective. There are also many grid cells where temporal averaging 417 

is effective, but spatial averaging is barely effective, or not effective at all (Figure 8c and 418 

Supplemental Figure S4). Finally, there are some grid cells, particularly in the Central US 419 

(Figure 8d and Supplemental Figure S4), where spatial averaging over smaller regions is 420 

effective, but spatial averaging of larger regions actually increases the calculated DM8H O3 421 

anomaly by including surrounding grid cells that have higher variability. 422 

 423 

4 Discussion 424 

We now return to the original three research questions posed in Section 1. First, what is 425 

the magnitude of ozone variability due to meteorology alone at the smallest scale, and what is the 426 

impact of increasing the scale of temporal and spatial averaging? In both observed and modeled 427 

DM8H O3 surface data, the small-scale variability driven solely by the meteorological variability 428 

impact on atmospheric chemistry (expressed as the standard deviation as a percentage of the 429 

mean) can exceed 20% (Table 1, Figure 2d). The chemical variability examined here is the result 430 

of fluctuations in meteorology, which itself results from larger-scale climatological drivers. 431 

While variability in emissions also influences atmospheric chemistry, our analysis has removed 432 
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the influence of emissions variability and isolated the variability due to meteorology. There is 433 

high temporal and spatial heterogeneity of surface ozone (Figure 2d), with the lowest values 434 

found in the Western US (< 10%), higher values found in the Eastern US (up to 20%), and the 435 

highest values over coastal or heavily populated regions (up to 30%). Averaging over longer 436 

temporal scales (by increasing the averaging window) and over larger spatial scales (by 437 

expanding the averaging region) can reduce the magnitude of the calculated variability, with 438 

temporal averaging proving to be more effective than spatial averaging in most cases (Figure 8). 439 

In this study, we performed simple spatial averaging, but there are other methodologies for 440 

smoothing two-dimensional signals (e.g. Räisänen et al., 2011; Pogson and Smith, 2015) that 441 

could potentially increase signal detection capabilities. 442 

Second, are there combinations of temporal and spatial averaging that maximize the 443 

filtration of calculated ozone variability, and thus maximize the potential for signal detection? 444 

Figure 8 (and Supplemental Figure S4) demonstrate clearly that there are cases in which the 445 

combined usage of temporal and spatial averaging can reduce the calculated variability better 446 

than either strategy alone (see Figure 8b), although there are many regions within the Eastern US 447 

in which spatial averaging has little to no impact on reducing the calculated variability (Figure 448 

8c) or even results in an increase in the calculated variability (Figure 8d). There are no such 449 

cases (see Supplemental Figure S4) in which expanding the temporal averaging scale increases 450 

the calculated ozone variability. This could potentially enable region-specific averaging 451 

strategies that help decision-makers identify and meet regional air quality objectives. 452 

Third, are these results dependent on the particular parameterizations of the CESM 453 

CAM-chem model, are they consistent with the available CASTNET observations? The three 454 

CESM CAM-chem simulations exhibited consistent representations of ozone variability, 455 

consistent with our understanding of future changes to the climate (and meteorology) and the 456 

resulting impact on atmospheric chemistry (Table 1, Figure 4, S1, and S2). Compared to the 457 

CASTNET observations (which we detrended to remove the influence of changing precursor 458 

emissions), the present-day simulation (MOZ_2000) exhibited a high ozone bias in the Eastern 459 

US (which is also evident in the future simulations, MOZ_2050 and MOZ_2100), while the 460 

representation of the ozone variability is comparable (Table 1). 461 

Finally, how may these strategies be applied to other datasets, be they chemical, 462 

meteorological, or climatological?  Much of this analysis could be applied to any dataset that has 463 
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spatial and temporal coverage, as long as some set of acceptable thresholds is provided. While 464 

our time step in this analysis is daily (given the DM8H O3 metric), and applied only to 465 

summertime (JJA) days, any time step (i.e. hourly, monthly, annual, decadal) could be utilized as 466 

long as cyclical trends (e.g. diurnal or seasonal cycles) are removed. Indeed, the sliding-scale 467 

presentation in Figure 8 and Supplemental Figure S4 can specifically be utilized to identify 468 

particular spatial and temporal scales that are sufficient to identify signals at particular thresholds 469 

and to identify particular geographic regions that are best suited to identify a given signal. For 470 

example, Sofen et al. (2016) identified regions across the globe where additional observations 471 

would be particularly suited to improve our understanding of surface ozone behavior, and our 472 

analysis could potentially be used to identify particular temporal and spatial averaging scales that 473 

could further maximize the capability for trend detection. In particular, Sofen et al. (2016) noted 474 

that the peak in the power spectrum of the El Niño-Southern Oscillation (ENSO) on surface 475 

ozone is at the 3.8 year time scale, and that within some regions within the US, the amplitude of 476 

the ENSO influence on surface ozone approached 0.5 ppbv (and up to 1.1 ppbv globally). Our 477 

analysis shows that there are no grid cells within the Continental US where a 0.5 ppbv signal can 478 

be identified at the 5-year (or shorter) temporal averaging scale (Supplemental Figure S4), but 479 

that there are many regions – especially within the Western US – in which even a modest amount 480 

of spatial averaging can identify surface ozone signals below the 1 ppbv level with a 5-year or 481 

shorter averaging window. The type of sliding-scale analysis – in which spatial and temporal 482 

averaging are utilized individually and in combination – as presented in Figure 8 and 483 

Supplemental Figure S4 could readily be applied to a wide range of atmospheric (and other) 484 

topics to aid in the capability to identify signals that exist both in space and in time. In particular, 485 

low-frequency oscillations (e.g. ENSO, and others) and other forms of internally or externally 486 

forced trends (e.g. anthropogenic and natural changes in emissions) are readily adaptable to this 487 

type of analysis. 488 

Finally, we did not quantify statistical significance (as in Lewandowski et al., 2015) as 489 

our goals were to understand the general nature of ozone variability at all scales and for all signal 490 

strengths. Statistical significance testing (and other statistical techniques) can certainly provide 491 

additional information as to the strengths of ozone signals within the underlying variability, and 492 

can be used to extend these results in a case-by-case manner, but we leave this testing to future 493 

studies that can focus on particular air quality objectives at particular temporal and spatial scales. 494 
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 495 

5 Conclusions 496 

We quantified the impact of spatial and temporal averaging at different scales – both 497 

individually and combined – on estimates of surface ozone variability and the resulting 498 

likelihood of over-confidence in estimates of chemical signals over the United States using 499 

CASTNET observations and the CESM CAM-chem model. We simulate three multi-decadal 500 

time periods, each with constant surface emissions, and find that this analysis is consistent across 501 

our simulated time periods, and that our results are not sensitive to particular configurations 502 

parametric choices within the CESM CAM-chem (i.e. emissions, meteorology, and climate). We 503 

also provide a conceptual framework for gaining understanding of the influence of spatial and 504 

temporal averaging that may be adapted to a wide range of atmospheric and surface phenomena, 505 

provided sufficient spatial and temporal coverage. Here we focus on surface ozone, a highly 506 

variable (in both space and time) atmospheric constituent with severe human health impacts and 507 

implications for planetary climate, which is the focus of many local, regional, and national 508 

policies. However, the resultant magnitude of these changes and trends are small compared to the 509 

magnitude of the day-to-day ozone variability, and detecting these changes and trends can be 510 

challenging. Our analysis and conceptual framework allow for a selection of spatial and temporal 511 

averaging scales that can aid in this signal detection. 512 

In order to quantify the impact of spatial and temporal averaging on ozone variability, we 513 

start by selecting four telescoping spatial regions (the Continental US, the Eastern US, the 514 

Northeastern US, and a single grid cell within the Northeastern US) and examine all possible 515 

choices for averaging windows (ranging from daily to multi-decadal windows), although we 516 

focused primarily on averaging windows of 1, 5, 10, and 20 years. We find that – consistent with 517 

previous studies – ozone variability is largest at the smallest scales, and is frequently on the order 518 

of ±10 – 20 ppbv, or which is roughly 15-20% of the mean ozone signal. In order to minimize 519 

the chemical noise that results from meteorological variability – and thus enhance the signal – 520 

we find averaging windows of 10-15 years (and sometimes longer at the smaller spatial scales) 521 

combined with modest (nearest-neighbor) spatial averaging substantially improve the capability 522 

for trend detection. 523 

We show that the largest ozone variability is found in the Eastern US (Figure 5, Figure S4), 524 

and subsequently there are many regions within the Eastern US where even a 20-year averaging 525 
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window has a non-negligible likelihood of estimating ozone variability that is dependent (with 526 

possible error in the 1 – 3 ppbv range) on the particular years selected. In addition, over much of 527 

the Eastern US, simulations of 5-years or shorter have a substantial likelihood (40 – 90%, 528 

Figures S1 and S2) of reflecting the influence of meteorological variability on chemistry rather 529 

than the mean state of surface ozone, with the possibility of 5 – 10 ppbv error (Figure S4).  530 

Finally, we demonstrate a conceptual framework that allows for a “sliding-scale” view of 531 

surface ozone variability, in which both temporal and spatial averaging is examined at every grid 532 

cell within the Continental US. We show that the magnitude of estimates of ozone variability can 533 

be reduced with both temporal and spatial averaging, although temporal averaging tends to be 534 

more effective. While there are many regions in which both temporal and spatial averaging used 535 

in conjunction substantially reduce the estimate of ozone variability, there are some regions 536 

where spatial averaging is ineffective, or even counter-effective. In contrast, this is not the case 537 

for temporal averaging, which consistently reduces the magnitude of estimated ozone variability. 538 

Our analysis could be combined with other studies (e.g. Sofen et al., 2016) to guide 539 

observational and modeling strategies and identify regions and scales at which particular signals 540 

are most likely to be identified. 541 

542 
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Code Availability 543 

CESM CAM-Chem code is available through the National Center for Atmospheric Research / 544 

University Corporation for Atmospheric Research (NCAR/UCAR) website 545 

(http://www.cesm.ucar.edu/models/cesm1.2/), and this project made no code modifications from 546 

the released model version.547 
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Data Availability 548 

The raw model output is archived on the NCAR servers, and processed data will be made 549 

available upon publication on Massachusetts Institute of Technology servers.550 
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 751 
Figure 1: Telescoping Spatial Regions included in this study. The largest scale we consider is the Continental 752 
US (outer border). We focus on the Eastern US, by subdividing into three subregions: the Midwest (blue), 753 
Northeast (black), and Southeast (red). Within each subregion we telescope into a 3x3 grid cell (yellow), 2x2 754 
grid cell (purple), and a 1x1 grid cell (green). In the paper, we only show a subset of these telescoping regions, 755 
and we include the rest in the Supplemental Material.  756 
 757 
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 759 
Figure 2: Continental US surface maps of (a) present-day MOZART mean DM8H O3; (b) present-day 760 
CASTNET mean DM8H O3; (c) present-day MOZART standard deviation; (d) present-day MOZART 761 
variability (standard deviation divided by mean, as a percent); (e) future MOZART year 2050 mean DM8H 762 
O3; and (f) future MOZART year-2100 mean DM8H O3. All model results are averaged over every JJA day 763 
in the time series, while the CASTNET results are only for the year 2000.  764 
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 766 
 767 

Figure 3: (a-d): Boxplots for surface DM8H O3 for every summertime (JJA) day from 1991 – 2014 averaged 768 
over the Continental US, the Eastern US, the Northeastern US, and a single grid cell in the Northeastern US 769 
from CESM CAM-chem (grey), CASTNET observations (blue), detrended CASTNET observations (green), 770 
and the detrended CASTNET values for the year 2000 only (red). (e) Comparison of the yearly JJA DM8H 771 
O3 estimates averaged over the Eastern US for MOZART (grey) and the detrended CASTNET (green) from 772 
1991 – 2014. The single red boxplot coincides with the red boxplot in (b). The units are in ppbv, and for each 773 
boxplot the box contains the Inter Quartile Range (IQR), the horizontal line within the box is the median, and 774 
the whiskers extend out to the farthest point which is within 1.5 times the IQR with circles indicating any 775 
outliers. 776 
 777 
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 779 
 780 

Figure 4: A representation of the variability of the DM8H O3 anomaly (from the long-term mean) for 781 
the four datasets in this study (CASTNET, MOZ_2000, MOZ_2050, MOZ_2100, columns) averaged 782 
over the four telescoping regions (CUS, EUS, NEUS, NEUS 1x1, rows). In each panel, the horizontal axis 783 
is the number of years in the dataset (24 years (1991-2014) for CASTNET, 26 years (1990-2015) for 784 
MOZ_2000, and 30 years (2036-2065 and 2086-2115) for MOZ_2050 and MOZ_2100), and the vertical 785 
axis represents the length of the averaging window (ranging from 1 day (bottom row) up to the entire 786 
time series (top pixel)). Each pixel represents the estimate of the ozone anomaly for a given averaging 787 
window (vertical axis) ending at a given time (horizontal axis). Horizontal lines indicate the length of 788 
averaging window required to guarantee that the variability drops below thresholds of 5 ppbv (solid), 1 789 
ppbv (dashed), and 0.5 ppbv (dotted).  790 
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 792 
Figure 5: Spatial Plots over the Continental US plotting the likelihood (%) that an estimate of ozone 793 
exceeds a given threshold due to meteorological variability (rows) at the grid-cell level when using 794 
different lengths of averaging windows (columns) for the present-day CESM simulation (MOZ_2000). 795 
 796 

 797 
Figure 6: As in Figure 5, but only the second row, for present-day CAM-chem, future CAM-chem 2050, 798 
and future CAM-chem 2100. 799 
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 801 
Figure 7: Combined impact of temporal and spatial averaging on reducing ozone variability on the 802 
likelihood (%) of exceeding the 0.5 ppbv threshold (as in Figures 5, 6, and Supplemental Figure S3) for 803 
the present-day MOZ_2000 simulation. The top row is the same as in Figure 6, while the lower rows 804 
have averaged the values within a 3x3, 5x5, 7x7, and 9x9 box surrounding each individual grid cell.   805 
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 807 
Figure 8: The maximum potential calculated DM8H O3 anomaly [ppbv] from the long-term mean for (a) 808 
the Continental US average and three individual grid cells taken from (b) Southern California, (c) the 809 
Northeast, and (d) the Rocky Mountains demonstrating the impact of temporal and spatial averaging, 810 
with the number of years included in the temporal averaging window increasing along the x-axis and the 811 
number of grid cells included in the spatial averaging window increasing along the y-axis. A full map of 812 
the Continental US can be found in the Supplemental Material (Figure S4). Note that the color scale is 813 
non-linear, and the color transitions are selected to match the thresholds established throughout this 814 
paper. 815 
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 817 
Table 1: Statistical Summary of the CASTNET observations and the three CAM-chem simulations for 818 
different spatial averaging regions within the US. Variability is defined as the standard deviation 819 
divided by the mean value (in percent). Biases are only included for the present-day CAM-chem 820 
simulation compared to the CASTNET data. Similar tables for the other regions in this study are 821 
included in the Supplemental Material.  822 
 823 
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